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Abstract: Microporous nanocarbon spheres were prepared by using a microwave assisted
solvothermal method. To improve the carbon dioxide adsorption properties, potassium oxalate
monohydrate and ethylene diamine (EDA) were employed, and the influence of carbonization
temperature on adsorption properties was investigated. For nanocarbon spheres containing not only
activator, but also EDA, an increase in the carbonization temperature from 600 ◦C to 800 ◦C resulted
in an increase of the specific surface area of nearly 300% (from 439 to 1614 m2/g) and an increase of
the CO2 adsorption at 0 ◦C and 1 bar (from 3.51 to 6.21 mmol/g).
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1. Introduction

The global economy requires a great amount of energy, which is produced primarily by the
combustion of fossil fuels. Carbon dioxide emissions are a significant negative side-effect of this activity.
Transportation also requires a great amount of petroleum and is responsible for significant emissions
of greenhouse gases [1,2]. The cumulative emission of CO2 strongly contributes to climate change and
is the greatest single contributor to the greenhouse effect [3,4]. The average concentration of CO2 in the
earth’s atmosphere in 2018 was 407 ppm, which is about 40% higher than in the preindustrial age [5].
The effort to develop technologies that will reduce CO2 emissions is very important for both the global
economy and the environment.

Recently, methods of CO2 capture from flue gas have been based on absorption into liquids
(e.g., amines [6] or methanol [7]). These technologies are energy intensive and not environmentally
sound. Solid sorbents offer an alternative solution. There are a number of criteria that must be met
for a successful sorbent material, namely: high selectivity and adsorption capacity for CO2, fast
adsorption/desorption kinetics, efficient regeneration of sorbents, and low cost [8].

In recent years, a number of materials have been investigated as solid state adsorbents for CO2,
such as: zeolites [9], silica [10], porous polymer materials [11], metal organic frameworks [12], and
carbon materials [13–16]. The most efficient for CO2 adsorption are carbon materials, which exhibit
a high surface area, large porous volume, chemical stability, affinity for carbon dioxide, low cost,
and the possibility of modification with heteroatoms [17]. The weak side of carbon sorbents is their
poor selectivity.

The application of carbon materials for CO2 uptake has been widely investigated. There are
many sources of carbon that can be used for the production of activated carbon: polymers, biomass,
or resins. Some examples are shown in Table 1. Potassium compounds, namely potassium hydroxide
or potassium oxalate, are most often used as chemical activators. Special attention should be paid
to resins. Gradual growth of the polymer chain allows incorporating modificators into the carbon
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matrix. Homogeneously distributed activator can improve not only the surface area of the material
(impregnation), but its whole volume. A resorcinol–formaldehyde resin mixture could be a suitable
carbon source for CO2 adsorption.

Table 1. Comparison of CO2 uptakes on various carbon adsorbents.

Carbon Source Activator CO2 Adsorption 0 ◦C
[mmol/g] 1 bar

CO2 Adsorption 25 ◦C
[mmol/g] 1 bar Reference

Resorcinol–formaldehyde resin K2C2O4 7.67 4.95 [18]
Resorcinol–formaldehyde resin K2C2O4 6.6 - [19]
Resorcinol–formaldehyde resin KOH 7.34 4.83 [20]

Resorcinol–formaldehyde
resin/EDA EDA; CO2 6.2 4.1 [21]

Furfuryl alcohol KOH 5.8 3.3 [22]
Polyacrylonitryle KOH - 2.74 [23]

Waste wool KOH 3.73 2.81 [24]
Starch KOH 6.6 4.3 [25]

According to the results presented in Table 1, resins are very promising as a carbon source to
produce solid sorbents for carbon dioxide capture.

Among nanocarbon materials, spherical structures have been widely studied. The most popular
method to obtain porous nanocarbon spheres is the method of Stöber, using resins as a carbon source.
The application of this method to produce carbon spheres was described in the work of Liu et al. [26],
where the source of carbon was a resorcinol–formaldehyde resin. Thanks to the development of the
Stöber method, researchers discovered a simple method to produce polymer beads. The product was
in the form of spherical regular particles. Since then, the phenol derivatives were widely used as a
carbon source [27,28]. In work by Zhao and co-workers [28], using 3-aminophenol as a precursor,
highly monodisperse material were obtained. They also proved that changing different parameters
allowed for tuning spherical size in a very broad range.

To enhance the surface area and porous volume, various processes of activation are employed,
with two primary methods to activate carbon materials. First, physical activation carried out through
carbonization in the presence of proper gases [29]. Second, chemical activation is induced by the
addition of a strong base, i.e., potassium oxalate [19], potassium hydroxide [20,30,31], and potassium
carbonate [32]. In the work of Choma et al. [18], chemical activation with potassium oxalate resulted
in a large increase in the surface area of carbon materials (from 680 m2/g to 1490 m2/g) and an
increase of CO2 uptake from 3.03 mmol/g to 7.67 mmol/g in 0 ◦C at 1 atm. This example showed
how modification with potassium oxalate can significantly enhance specific surface area and CO2

adsorption of carbon spheres.
In order to improve synthesis conditions of carbon nanospheres, microwave assisted solvothermal

reactor has been used [33,34]. Performing the reaction in a common autoclave takes a significant
amount of time, often several hours, while the reaction in microwave assisted solvothermal reactor is
very fast, about 15 min. The temperature gradient using a microwave in the reactor volume is very low
and can be negligible. The microwave’s influence on the behavior of polar solvents in the reaction is
significant, and volume nucleation points are created rapidly.

In this work, the influence of the concentration of activator, potassium oxalate, carbonization
temperature, and influence of ethylene diamine (EDA) on the physical properties and adsorption of
carbon dioxide were investigated.

Ludwinowicz and Jaroniec [19] performed a simple one-pot synthesis of carbon spheres and
obtained very good CO2 adsorption values. In this work, simple autoclave was replaced by microwave
assisted solvothermal reactor. The use of such a reactor enabled a significantly shortened reaction time.
Heating with microwaves avoids a variance in the temperature profile in the reactor volume, no local
overheating, and the products obtained are of very good quality, with uniform shape and size of the
produced particles.
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Previous research obtained in this research community has been promising [33,34]. In the present
work, we describe more in depth research on the influence of modificator and carbonization temperature
on surface area, porosity, and carbon dioxide adsorption.

2. Experimental

2.1. Sample Preparation

The samples were synthesized as follows: First, an aqueous–alcohol solution consisting of 60 mL
distilled water and 24 mL ethanol was prepared by mixing at an ambient temperature. Subsequently,
0.60 g of resorcinol and 0.30 mL of ammonium hydroxide (25 wt.%) was added to the mixture under
continuous stirring for 10 min. After dissolving of the resorcinol, the proper amount of potassium
oxalate was added and the mixture was stirred for 30 min. The weight ratio potassium: carbon was
7:1 and 9:1. For samples modified with EDA, 0.3 mL of EDA was added. Next, 0.9 mL of 37 wt.%
formaldehyde was dropped into the solution and kept under magnetic stirring for 24 h. Afterwards,
the solution was treated in a solvothermal microwave reactor ERTEC MAGNUM II (pressure 2 MPa,
time—15 min). The resulting materials were dried at 80 ◦C for 48 h. The carbonization of the carbon
nanospheres was performed in argon atmosphere at 350 ◦C for 2 h with a heating rate of 1 ◦C/min, then
the temperature was raised to 600 ◦C, 700 ◦C, or 800 ◦C with the same heating rate and also for 2 h. The
materials obtained were washed two times with 200 mL of distilled water and dried at 80 ◦C for 48 h.

2.2. Characterization

The morphology of the produced samples was determined using a Hitachi SU8020 Ultra-High
Resolution Field Emission Scanning Electron Microscope (FE-SEM).

The density of the materials was determined using a helium pycnometer Micro-Ultrapyc 1200e.
The chemical composition of the samples’ surface was studied by X-ray Photoelectron Spectroscopy

(XPS). The measurements were conducted using Mg Ka (hν = 1253.6 eV) radiation in a Prevac (Poland)
system equipped with a Scienta (Sweden) SES 2002 electron energy analyzer operating with constant
transmission energy (Ep = 50 eV). The analysis chamber was evacuated to a pressure below 1·10−9 mbar.
A powdered sample of the material was placed on a stainless steel sample holder.

Thermal stability of the produced materials was investigated using Thermal Gravimetric Analysis
(TGA). The thermogravimetric measurements were carried out with the use of STA 449 C thermobalance
(Netzsch Company, Germany). Approximately 10 mg of the sample was heated at 10 ◦C/min to 950 ◦C
under air atmosphere.

To determine textural properties of the carbon spheres, the low temperature physical adsorption
of nitrogen was carried out at −196 ◦C using the Quadrasorb volumetric apparatus (Quantachrome
Instruments). Carbon dioxide uptake was gathered at temperature 0 ◦C and 25 ◦C using the
same apparatus.

3. Results and Discussion

3.1. Samples’ Morphology

The morphology of the carbon spheres was studied using Scanning Electron Microscopy (SEM).
The SEM images of the samples carbonized in 700 ◦C are shown in Figure 1. For the material without
modification (Figure 1a), small, monodisperse spheres were obtained. The average diameter of the
carbon spheres was determined by SEM to be about 400 nm. For the material prepared by the addition
of the activator (potassium oxalate, Figure 1b), two classes of spheres were observed: smaller spheres,
about 500 nm in diameter, and larger, about 2–3 µm. The large difference in the diameter of the
spheres was the result of the addition of potassium oxalate. The resorcinol–formaldehyde spheres were
influenced by the oxalate moieties, and thus larger spheres were formed. However, there was a fraction
of the smaller spheres, where oxalate moieties were likely less present. The higher concentration of
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potassium oxalate (Figure 1c) resulted in higher saturation of the solution. The spheres containing
more potassium oxalate were larger. Nonetheless, there was a large amount of small spheres, which
did not contain oxalate moieties. Thus, a large amount of carbon material was not modified.
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Figure 1. Scanning Electron Microscopy (SEM) images of the spheres: (a) without modification; (b) with
activator concentration 7/1; (c) with activator concentration 9/1; (d) with ethylene diamine (EDA)
modification; (e) with activator concentration 7/1 and EDA modification.

For the material modified with EDA only (Figure 1d), the monodispersity of the spheres was
kept, however larger spheres (diameter ca. 800 nm) were formed. The larger diameter and the
monodispersity of the spheres are evidence that EDA was well dispersed in the whole volume, and so,
all carbon spheres contained EDA. In the case of the material modified with both EDA and potassium
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oxalate (Figure 1e), the influence of both modifiers can be noticed. The average diameter of the spheres
was larger and the spheres were more uniform. EDA provided better dispersion of potassium oxalate
in the reaction volume, thus potassium ions were present in a higher amount of the spheres. In the
end, a much bigger specific surface area value was reached.

The size distribution of the produced particles was evaluated from the SEM images using the
ImageJ software tool and is illustrated in Figure 2a–e. The quantity of spheres taken into account was
50 for every kind of the sample.

The results for the reference sample are given in Figure 2a. RF 700 exhibited the highest
monodispersity among all the samples. The diameter of the spheres was about 600 nm.
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Figure 2. (a) Size distribution of the reference sample. (b) Size distributions of the samples with lower
activator content (7/1). (c) Size distribution of the samples with higher content of the activator (9/1).
(d) Size distribution of the samples modified with EDA only. (e) Size distribution of the samples
modified with EDA and activator.

The modification of carbon materials with the lower content of potassium oxalate resulted in higher
variation in the spheres’ size distribution. A considerable amount of produced spheres had a diameter
from 300 to 1000 nm, as shown in Figure 2b. With the increase of the carbonization temperature, the
formation of larger spheres (about 2000 nm) was observed. For the material carbonized at 600 ◦C, the
majority of spheres were about 500 nm, whereas on the other hand for the sample carbonized at 800 ◦C,
this value shifted to about 700 nm.

Comparing the samples with different amounts of activator, the strong influence of the activator
concentration on the spheres’ size was noticed. Higher activator content in the samples resulted in the
widest size distribution (Figure 2c). Moreover, the large spheres of diameter over 2000 nm were formed.

The size distribution of the samples modified with EDA only is presented in Figure 2d. Compared
to the samples modified with potassium oxalate, the highest monodispersity of the spheres was gained.
Nonetheless, increasing the carbonization temperature caused the distribution to be broader.

As can be seen in Figure 2e, the application of both the modificators limited the production of
the large spheres (over 2000 nm). Unlike previous distributions, by increasing the carbonization
temperature, the shift of distribution towards smaller spheres was noticed.

3.2. Surface Chemistry

The surface composition of materials was analyzed by X-ray Photoelectron Spectroscopy (XPS).
The survey spectra acquired for all analyzed samples are shown in Figure 3. The evaluation of the
elemental composition of the surface of all samples is presented in Table 2. In all samples, carbon and
oxygen was present, and potassium was observed in samples prepared with potassium oxalate.
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Table 2. Elemental composition of the surface of the samples.

Sample
C O N K

at. %

RF_700 96 3 ~1 -

RF_7_1_600 88 11 <1 ~1

RF_7_1_800 92 7 <1 ~1

RF_7_1_EDA600 87 8 3 ~2

RF_7_1_EDA800 88 9 <1 ~3

RF_9_1_600 76 18 ~2 ~4

RF_9_1_800 85 11 <1 ~3

RF_EDA600 92 4 ~4 -

RF_EDA800 93 3 ~4 -

The highest carbon content was observed for the pure carbon material (RF_700); oxygen constitutes
only 3% of the surface atoms. The surface of the samples prepared with EDA only also contained a
relatively small number of oxygen atoms (approximately 4%), however those surfaces also contained
about 4% of nitrogen atoms. The presence of potassium in the internal structure of the material is
associated with an increased concentration of oxygen atoms. The more potassium observed in the
material, the higher the concentration of oxygen observed, as residual potassium atoms were bound
with oxygen. In general, when the carbonization temperature was increased to 800 ◦C, this resulted in
a lower oxygen concentration than that observed for samples carbonized at 600 ◦C. There is noticeably
more potassium retained on the surface of the samples modified by both potassium oxalate and EDA
in comparison to materials modified by potassium oxalate only. A possible explanation for this is that
a reaction of potassium with amine groups occurred.
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The analysis of high-resolution XPS data brings a more detailed view of the chemistry of the
surface of the studied materials. In Figure 4, the spectral region of binding energy between 280 eV
and 300 eV is displayed for two samples of carbon spheres obtained with the weight ratio potassium:
carbon of 9:1 (RF_9_1_600 and RF_9_1_800). This region contains the spectrum components originating
from C 1s and K 2p electrons. The peak maximum of K 2p3/2 is located at 293 eV and it is accompanied
with a K 2p1/2 spin-orbit component at 295 eV. The peak maximum of XPS C 1s spectrum is located at
284.4 eV. This energy is characteristic for highly graphitized carbon materials. However, a distinctive
shoulder at about 288 eV is present in the spectrum for both samples, though more prominent on the
sample carbonized at 600 ◦C. This position is usually ascribed to the general group of carbon moieties
containing O–C=O bindings. The intensity of the spectra is normalized in respect to the intensity of
the main peak of carbon. It can be pointed out that the relative intensity of lines corresponding with
potassium atoms as well as carbon atoms in O–C=O bindings decreases in comparison to C–C bonds,
reflected by XPS C 1s peak at 284.4 eV. This shows that increased carbonization temperature results in
a partial depletion of potassium atoms from the surface as well as a decomposition of a part of C–O
bonds. This corresponds well with the quantitative analysis described above. Similar observations are
also valid for samples with a lower potassium:carbon ratio.
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Figure 4. X-ray photoelectron spectrum of C 1s and K 2p regions for samples prepared with potassium
oxalate with a potassium:carbon ratio of 9:1.

Slightly different behaviour of the surface species is observed for samples prepared with EDA.
In Figure 5, the spectral region of the binding energy between 280 eV and 300 eV is displayed for two
samples of carbon spheres obtained with the weight ratio potassium:carbon of 7:1 with the addition of
EDA (RF_7_1_EDA600 and RF_7_1_EDA800). The position of the K 2p peaks is identical to samples
without EDA admixture, indicating that the chemical state of potassium atoms is not changed by
EDA presence during the preparation stage. However, the peak maximum of the C 1s line for sample
RF_7_1_EDA600 is located at 284.6 eV, which is characteristic for C–C bonding in aliphatic sp3 bonds or
non-graphitic amorphous carbon. For the sample carbonized at 800 ◦C, the respective peak maximum
of C 1s line is shifted to 284.4 eV. Similar to the samples prepared without EDA, this peak position is
assigned to C–C bonds in graphitized carbon material. It is worth noting that the relative intensity of K
2p lines for 600 ◦C and 800 ◦C of carbonization is only slightly changed.
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Figure 5. X-ray photoelectron spectrum of C 1s and K 2p regions for samples prepared with potassium
oxalate with a potassium:carbon ratio of 7:1 with the addition of EDA.

3.3. Thermogravimetric Analysis

In order to investigate the thermal stability of the samples, thermogravimetric measurements were
performed. The results of the TGA studies are shown in Figure 6 and Table 3. The reference sample
began to lose mass at about 364 ◦C. This can be explained by the decomposition of the functional
groups. Further, the decomposition of the carbon matrix occurred.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 10 of 21 

 

Figure 5. X-ray photoelectron spectrum of C 1s and K 2p regions for samples prepared with 

potassium oxalate with a potassium:carbon ratio of 7:1 with the addition of EDA. 

3.3. Thermogravimetric Analysis 

In order to investigate the thermal stability of the samples, thermogravimetric measurements 

were performed. The results of the TGA studies are shown in Figure 6 and Table 3. The reference 

sample began to lose mass at about 364 °C. This can be explained by the decomposition of the 

functional groups. Further, the decomposition of the carbon matrix occurred. 

 

Figure 6. Results of thermogravimetric studies (heating in air). 

Compared with the non-modified sample RF 700, the addition of the EDA alone did not affect 

the thermal stability of the sample. On the contrary, the addition of potassium oxalate led to a 

significant decrease of the thermal stability. All samples containing potassium oxalate were 

characterized by a lower decomposition temperature. Potassium ions are attracted to polar water 

298 296 294 292 290 288 286 284 282

 RF 7/1 EDA 600

 RF 7/1 EDA 800

Binding energy (eV)

XPS C 1s

0 100 200 300 400 500 600 700 800 900

0

10

20

30

40

50

60

70

80

90

100
 

 

M
a

s
s
 [
%

]

Temperature [
o
C]

 RF 700

 RF 7/1 700

 RF EDA 700

 RF 9/1 700

 RF 7/1 EDA 700

Figure 6. Results of thermogravimetric studies (heating in air).

Compared with the non-modified sample RF 700, the addition of the EDA alone did not affect the
thermal stability of the sample. On the contrary, the addition of potassium oxalate led to a significant
decrease of the thermal stability. All samples containing potassium oxalate were characterized by a
lower decomposition temperature. Potassium ions are attracted to polar water molecules, thus the
addition of potassium to the carbon matrix resulted in higher hydrophilicity of the material. The mass
loss began at 100–150 ◦C because of the removal of water molecules. Due to mobile energized potassium
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ions, the depleted carbon matrix is less resistant to thermal decomposition (start of decomposition was
detected at about 180 ◦C).

The thermal stability of the sample with the addition of both modificators was similar to that
modified with potassium oxalate only.

Table 3. Results of the thermogravimetric studies.

Sample Start of Mass Loss
(◦C)

Max of Mass Loss
(◦C)

End of Mass Loss
(◦C) Residue (%)

RF 700 364 600 712 7.03
RF 7/1 600 181 420 547 16.71
RF 7/1 700 181 420 547 20
RF 7/1 800 181 432 573 14.53

RF + EDA 700 364 589 728 8.6
RF 7/1 + EDA 700 149 391 519 21

3.4. Adsorption Studies

According to the low-temperature nitrogen adsorption–desorption studies, for samples modified
with oxalate only, the increase of carbonization temperature resulted in a higher volume of adsorbed
nitrogen. The opposite effect was observed for samples modified with EDA only. The addition of both
modificators gave a similar result to the use of oxalate only.

Some examples of low-temperature nitrogen adsorption isotherms are shown in Figure 7.
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Figure 7. Low-temperature nitrogen adsorption isotherms of carbon spheres modified with potassium
oxalate and/or with EDA.

The isotherms are of type Ia [35], characteristic for microporous materials, however a slight increase
of adsorbed nitrogen volume at the highest P/P0 can be attributed to the presence of macropores
(type II). Spheres, modified with EDA only, adsorbed the lowest nitrogen volume. Modification with
potassium oxalate resulted in higher nitrogen adsorption, slightly increasing with dopant concentration.
The highest amount of nitrogen was adsorbed in the sample modified with both potassium oxalate
and EDA.

Physico-chemical properties of the samples were measured, and the results are shown in Table 4.
In almost all cases, except samples modified with EDA only, an increase in carbonization temperature
resulted in an increase of the samples’ density, specific surface area, total pore volume, and CO2
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adsorption. An unusual increase in density, simultaneously with an increase in surface area and
porosity can be explained by the decomposition of modificators and removal of gaseous decomposition
products. The same phenomenon was reported for activated carbon produced from palm shell and
modified with potassium carbonate [36] or phosphoric acid [37].

An extremely high increase in specific surface area and CO2 adsorption was observed for the
samples modified with both potassium oxalate and EDA. In contrast, samples without potassium
oxalate carbonized at higher temperatures did not exhibit larger surface area, and a lower amount
of CO2 was adsorbed (because of a lower microporosity). However, a higher concentration of the
activator did not improve the specific surface area. Due to the higher saturation of the mixture, bigger
spheres were formed, but oxalate moieties were not well dispersed within the volume of the sample
(as shown before in SEM images).

Table 4. Physico-chemical properties of the obtained samples.

Sample Density
(g/cm3)

SBET
(m2/g)

Total Pore Volume
(cm3/g)

CO2 Adsorption at 0
◦C (mmol/g)

CO2 Adsorption at
25 ◦C (mmol/g)

RF 700 1.79 444 0.25 3.25 2.43
RF 7/1 600 1.68 599 0.34 3.73 3.41
RF 7/1 700 1.97 645 0.43 5.15 3.67
RF 7/1 800 2.26 1331 0.74 5.52 3.96
RF 9/1 600 1.75 530 0.29 3.79 3.20
RF 9/1 700 1.80 843 0.46 4.43 3.74
RF 9/1 800 1.95 1252 0.68 5.56 3.87

RF EDA 600 1.59 396 0.24 2.66 1.94
RF EDA 700 1.67 369 0.20 2.57 2.01
RF EDA 800 1.72 341 0.19 3.01 2.28

RF 7/1 EDA 600 1.62 439 0.27 3.50 2.51
RF 7/1 EDA 700 1.74 1114 0.64 5.89 4.60
RF 7/1 EDA 800 1.99 1614 0.93 6.21 4.02

For adsorption of carbon dioxide, the presence of the micropores below 1 nm is considered to be
most important, and the pore size distribution in this area was calculated from CO2 adsorption at 0 ◦C
and is shown in Figure 8.
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In the research paper [21], doping of the carbon spheres with EDA was described. Increasing the
EDA ratio (from 0.2 mL to 0.8 mL for 0.4 g of resorcinol) led to an improvement of specific surface
area and CO2 uptake at 25 ◦C. The work of Sibera et al. [34] also reported a positive effect of a higher
concentration of EDA as a modificator, improving the CO2 uptake. In the present paper, more detailed
studies on the influence of carbonization temperature on samples modified with EDA were performed.

The samples modified with EDA showed much lower surface areas and CO2 adsorption than the
reference sample RF 700. A higher carbonization temperature resulted in lower surface area (Table 4)
and lower total pore volume, but an increase of the CO2 uptake was observed. This observation
can be explained by higher micropore volume, below 0.4 nm for the sample RF EDA 800 (Figure 8).
At elevated temperatures, carbon spheres have a tendency to aggregate, thus the effective surface area
decreased. Density measurements proved the increase of density (from 1.59 g/cm3 for RF EDA 600 to
1.72 g/cm3 for RF EDA 800). In contrast, an increase in the carbonization temperature increased the
volume of the pores below 0.4 nm (Figure 8) and consequently the CO2 adsorption capacity.

Significant differences were noticed for the samples modified with potassium oxalate. In the
paper [19], Ludwinowicz and Jaroniec applied three potassium oxalate concentrations, with a K:C ratio
of 3:1, 5:1, and 7:1. The growth in surface area (460 m2/g for pure material and 2130 m2/g for the highest
concentration potassium oxalate) and CO2 adsorption (2.8 mmol/g for pure material and 6.6 mmol/g
for the highest concentration potassium oxalate) was observed. In order to investigate the influence of
the activator concentration on the physico-chemical properties of the spheres, we employed a higher
concentration of potassium oxalate monohydrate (weight ratio K:C = 9:1). The specific surface area
values were similar to the values for samples with a lower activator concentration. A significant
difference in CO2 uptake at 0 ◦C and 25 ◦C was observed for sample RF 9/1 carbonized at 800 ◦C.

The microporosity of these samples carbonized in 700 ◦C is given in Figure 9. The sample RF 700,
compared to the samples modified with potassium oxalate, had the lowest specific surface area. This
was caused by a lack of energized potassium ions to interact with the carbon matrix and a lack of carbon
dioxide released in the result of decomposition of potassium oxalate, creating porosity. For the sample
RF 7/1 700, modified with the lower amount of activator, a significant increase of the microporosity
in the range of width from 0.3 to 0.7 nm was observed. Application of the higher concentration of
the activator in the sample RF 9/1 700 improved the specific surface area, but the lower amount of
adsorbed CO2 was noticed, which was in agreement with the lower volume of pores below 0.7 nm,
as shown in Figure 9. The highest values of the specific surface area and CO2 adsorption were obtained
for the samples modified with potassium oxalate and EDA simultaneously. Energized potassium
ions penetrated the nanocarbon material, but on the other hand, EDA improved the basicity of the
material and distribution of the oxalate moieties throughout the nanocarbon sphere. For the sample
RF 7/1 + EDA 700, the value of the specific surface area was twice as high as the sample modified
with potassium oxalate only, but the CO2 adsorption was only slightly higher. The microporosities
of both samples with a diameter of 0.7 nm were comparable. The sample RF 7/1 + EDA 700 had a
higher volume of pores from 0.7 to 0.9 nm, however this feature did not improve the CO2 adsorption
significantly. Despite the higher value of the specific surface area of the sample carbonized in 800 ◦C
(500 m2), the CO2 uptake at 0 ◦C was only slightly better, however at 25 ◦C, a decrease of the adsorbed
value for the sample RF 7/1 + EDA 700 was observed.

The adsorption capacity values of all samples are presented in Figure 10. The samples carbonized
in 600 ◦C were more resistant to a decrease in CO2 adsorption at the higher adsorption temperature.
Mostly, the increase of carbonization temperature led to higher surface area and CO2 adsorption, but a
significant decrease of the adsorbed values of CO2 at 25 ◦C compared to 0 ◦C was observed.
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Figure 10. CO2 adsorption values of the tested samples.

4. Discussion

The modificators played a double role in this reaction system: first creating more porosity and
second, giving a basic chemical character to the produced material.

In our previous paper [33], chemical activation of carbon spheres using a similar amount of
potassium oxalate monohydrate was achieved. In the case of the materials prepared with potassium
oxalate monohydrate, two activation mechanisms can be distinguished. First, potassium ions penetrate
the carbon material and a high porosity material was formed [38]. The effect of a higher carbonization
temperature resulted in more energetic potassium ions migrating into the nanocarbon spheres. Second,
decomposition of potassium oxalate monohydrate at about 570 ◦C resulted in the release of CO2,
which would help remove pyrolyzed volatile products from the carbon matrix and could also prevent
an aggressive pore widening process, leading to better microporosity [39,40]. Potassium oxalate
decomposes to release carbon dioxide and to form potassium carbonate. The latter decomposed above
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700 ◦C, also with the release of carbon dioxide, and then, an increase of carbonization temperature from
700 to 800 ◦C resulted in an increase in specific surface area by over 100%, from 645 to 1331 m2/g (Table 4).
Nonetheless, the CO2 adsorption values were only slightly enhanced (from 5.15 to 5.52 mmol/g at 0 ◦C).

EDA also decomposes at elevated temperatures, with the release of ammonia, carbon dioxide,
carbon monoxide, nitrogen oxides, and/or volatile amines. However, the release of the gaseous
decomposition products did not result in an increase of the porosity of the material. Thus, the use of
EDA alone did not change the physical properties of the material.

The best results were obtained when both activators were applied. We posit that EDA reacted with
potassium oxalate, forming the chelates, which improved the homogeneous distribution of potassium
within the sample volume. This can be explained by the trapping of migrating potassium ions by
amine groups. The ability of EDA to form chelates with metals (“amino acid metals”) is well known.
Half of EDA produced by the Dow Chemical Company [41] is used as a chelating agent, forming
complexes with certain metal ions to prevent the ions from interfering with processing or to promote
buffering, concentration, separation, or transport.

Carbonization at high temperatures caused decomposition of both modificators and of the formed
chelates, nevertheless some potassium remained in the samples and had a positive effect on the
adsorption properties towards carbon dioxide, increasing surface basicity.

Potassium can form carbides with carbon. According to the literature [42], there is a possibility of
the formation of the following potassium carbides: KC8, KC16, KC24, KC32, KC48, and KC60. These
carbides have graphite-like lattices in which the metal atoms are situated between the layers of carbon
atoms. The metal atoms are located at the centers of the carbon hexagons.

Relevance of the presence of pores below 1 nm in the matter of CO2 adsorption has been
widely documented [43,44]. Presser and coworkers [45] claimed that under atmospheric pressure,
the contribution of the pores below 0.8 nm to the CO2 adsorption was the most significant. Pore
size distributions of the modified samples showed that use of chemical activator was necessary, i.e.,
potassium oxalate monohydrate was responsible for the creation of micropores beneath 0.4 nm.

Activation with potassium led to the creation of irregularities on the surface of carbon materials [46].
Gadkaree and Jaroniec [47] investigated pore structure development in carbon materials produced

from resins. They fabricated two types of carbon honeycomb structures: standard type A, which
involved phenolic resin as the liquid precursor, and type B, which involved the same phenolic resin but
containing cobalt acetate dissolved at 1 wt.%. Both kinds of samples were carbonized in nitrogen at a
high temperature and then activated in CO2. For samples of type A, only micropores (no mesopores
at all) were formed and their volume increased as a result of the deepening of pores formed during
carbonization. No pore broadening was observed for these samples. The introduction of a metallic
catalyst (cobalt) in the precursor resin changed the pore structure dramatically (samples B). The pore
structure on carbonization remained the same as that of the carbon without the catalyst (samples A).
The difference between type A and B appeared upon activation. A bimodal pore size distribution
was observed for samples B. Despite micropores of the same size range as in samples A, large meso
and macropores were formed in samples B. In both kinds of samples, A and B, the micropore volume
increase took place because of pore deepening, rather than pore broadening.

According to Casso et al. [48], the adsorption in pores depended on the applied pressure. With an
increase of adsorption pressure, bigger and bigger pores govern the adsorption, nonetheless researchers
state that at the atmospheric pressure, adsorption is contributed to by the narrow micropores (below
0.6 nm) with high adsorption potential. To use the whole adsorption potential of bigger micropores,
higher fugacity of adsorbent is required. Hence, the higher pressure must be applied.

Investigation of Chen et al. [49] showed that the adsorption of CO2 molecules in the 0.3 nm slit
pores, due to the similar size of CO2 molecules, was very poor. In contrast, the highest CO2 adsorption
was noticed in the 0.4 nm pores. Furthermore, strong decrease of the stabilization energy of CO2

molecules in pores larger than 0.4 nm was noticed. With an increase of pore size, the interactions
between CO2 molecules and carbon pores were more and more weak.
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To summarize, the presence of micropores below 0.7 nm is one of the essential traits for a good
CO2 adsorbent. Comparing the samples modified with potassium oxalate, the 7:1 weight ratio is an
optimum one value, and there is no benefit to employ more.

According to the analysis of the obtained results, the adsorption properties of nanocarbon
materials towards carbon dioxide increased with both increasing specific surface area and porosity
(Figures 11 and 12).
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The presence of potassium on the surface of the samples had a positive effect on the CO2 adsorption
(Figure 13), however the presence of surface oxygen had no apparent effect on adsorption. Surprisingly,
the presence of surface nitrogen decreased the ability to adsorb carbon dioxide (Figure 14).
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5. Conclusions

Highly porous nanocarbon materials for CO2 adsorption were produced through a novel synthesis
method using a microwave assisted solvothermal reactor and varying the concentration of key reactants
and modifactors. Replacement of an autoclave by a microwave assisted solvothermal reactor resulted
in a significant shortening of reaction time (from several hours to minutes) and very good quality of
the obtained product (uniform shape and narrow size distribution).

Using potassium oxalate monohydrate as an activator agent resulted in a high volume of
micropores in the material, which are responsible for CO2 adsorption at atmospheric pressure. EDA
by itself did not improve the physicochemical properties of the carbon material, as shown in CO2

uptake. However, use of both modificators led to the formation of a highly microporous material
exhibiting both large specific surface areas and high CO2 uptake. It is thus concluded that surface
morphology (microporosity) and surface chemistry, especially an amine promotor, lead to the best CO2
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adsorption profile. Further, the differences between low temperature CO2 adsorption (0 ◦C), where
physisorption dominates, and higher temperature adsorption, where chemisorption is more dominant,
highlights the importance of surface chemical engineering of nanocarbon materials and, additionally,
the importance of surface analysis in process development and optimization using both carbonization
and modificators.
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