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A B S T R A C T   

The development of an effective photocatalyst for CO2 reduction is currently being addressed by many scientists. 
This study concerns the influence of the addition of carbon spheres (CS) on photoactivity of TiO2 and ZnO. The 
photocatalysts were tested in a liquid phase system in an alkaline environment. The suspensions of the tested 
materials were irradiated with UV–Vis light for 6 h. Then, the amount of the obtained products in the gas phase 
was analysed by gas chromatography. The identified products of CO2 photoreduction were hydrogen, carbon 
monoxide, and methane. Based on the results, it was found that CS/TiO2 and CS/ZnO showed similar activity in 
carbon dioxide reduction processes, however, more product amounts were obtained in experiments with the use 
of CS/TiO2 materials. The addition of carbon spheres to titanium dioxide improved its activity in carbon mon-
oxide production. The maximum photoactivity of CS/TiO2 was observed for the addition of 0.1 g of CS. On the 
other hand, in the case of CS/ZnO materials, carbon spheres did not positively affect their performance. 
Nevertheless, their activity increased with the CS amount.   

1. Introduction 

In the face of current dangerous climate changes, the photoreduction 
of CO2 into valuable products is one of the most promising methods to 
protect our environment. But, at the same time, it is a very complex 
process influenced by many parameters. That is why scientists from all 
over the world are intensively studying this challenging issue. 

The CO2 molecule is thermodynamically stable [1], so any reaction 
with it requires a significant amount of energy. Therefore, the conditions 
for photocatalysis, e.g., the type of photocatalyst, its size and sorption 
properties, the type of system, pH, temperature, intensity and range of 
radiation, are crucial to achieving a high level of CO2 reduction. 

The selection of the photocatalyst plays an important role here. TiO2 
is the most commonly used in photocatalysis, not only in carbon dioxide 
reduction but also in organic pollutants degradation, dye bleaching, or 
air and water purification in general [2–7]. Its P25 type, composed of 
75% anatase and 25% rutile, is highly effective for photocatalytic pro-
cesses and is more active than single–phase TiO2 [8,9]. Titanium dioxide 
in the form of brookite has been characterized by even higher photo-
activity [10–12]. There are many publications concerning CO2 reduction 

processes in which titanium dioxide in various forms is employed 
[13–17]. 

Aside from titanium dioxide, ZnO is considered a material with 
similar properties. According to the literature, it has a strong electro-
n–migration ability, high exciton binding energy, and the ability to 
generate electron–hole pairs rapidly [18]. Unfortunately, it has a rela-
tively large band gap. Hence it needs to be activated with UV light 
[19–21]. The poor ability to absorb visible light significantly limits the 
application of ZnO in more economical solutions that use sunlight. It is 
most commonly used to remove detergents, dyes, and pesticides 
[22–26]. However, publications concerning CO2 photoreduction can be 
found as well [27,28]. According to the literature, ZnO can also be 
successfully used in CO2 electroreduction processes [29–31]. 

Both TiO2 and ZnO are characterized by non–toxicity and relatively 
low production costs. Based on the literature, combining those two 
compounds is a promising method of increasing the activity in photo-
catalytic processes due to the synergistic effect of TiO2 and ZnO prop-
erties required in CO2 photoreduction [32]. Other photocatalysts 
studied and described in detail in the literature include carbonaceous 
materials (mainly g–C3N4 and its composites [33–35]), salts composites 
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(e.g. CdS, ZnS, MoS2 [36–41]), or Layered Double Hydroxides (LDHs) 
[42–44]. The main products in the photocatalytic reduction of CO2 with 
the use of those materials are carbon monoxide [36–38,43,44], methane 
[36–40,43], hydrogen [38,44], methanol [40–42], and formic acid [33]. 

Another critical factor in CO2 photoreduction is the reactor config-
uration and process conditions. Currently, two types of setups are widely 
used, namely liquid–phase reactors, which have been known and 
developed for decades, and gas–phase reactors, which are newer and 
characterized by high efficiency [45]. The main disadvantages of liq-
uid–phase reactors include poor solubility of CO2 solubility in water, 
limited mass transfer, and agglomeration of the catalyst [46,47]. This 
can lead to a significant reduction in photocatalytic performance. 
However, the undesirable effects can be minimized, especially by using 
circulation, constant stirring, and solvents/reduction agents other than 
water [45,48,49]. 

As mentioned above, the stability of the carbon dioxide molecule 
makes it difficult to carry out the photocatalytic process. In this case, it is 
worth considering the process in an alkaline environment. The absorp-
tion of carbon dioxide in an aqueous solution of sodium hydroxide is a 
recognized method of CO2 capture described in the scientific literature 
[50–53]. It is also well–known that the solubility of carbon dioxide in an 
aqueous NaOH solution is higher than in water. This is related to the 
carbonate equilibria, which means that CO2 is present in different forms 
depending on the pH of the solution [54]:  

• dissolved CO2/carbonate acid (H2CO3(aq)) at pH below 6.3, which is 
rapidly desorbed into the gas phase;  

• bicarbonate ions (HCO3− ), which predominate at pH between 6.3 
and 10.3; 

• carbonate ions (CO3
2− ) are only present in a strongly alkaline envi-

ronment at pH values above 10.3. 

Carbonate and bicarbonate ions are more reactive than CO2 itself. 
Moreover, OH− ions from NaOH solution can be hole–scavenging and 
form hydroxyl radicals that prevent the recombination of hole–electron 
pairs [55]. In another publication [56], thanks to this property, we 
demonstrated that more hydrogen is produced in an alkaline environ-
ment than in aqueous (neutral) conditions. 

The adsorption of CO2 is another key factor in the photoreduction 
process. A good CO2 adsorption capacity means that more CO2 mole-
cules can participate in the reaction on the surface of the photocatalyst. 
During the adsorption process, a negatively charged CO2

δ– molecule is 
formed, a crucial intermediate product in the formation of other prod-
ucts of the CO2 photoreduction process [57]. 

Considering the above information, experiments were carried out to 
investigate the photocatalytic properties in the process of CO2 reduction 
in the liquid phase. The tested materials consisted of TiO2 and ZnO, 
known as photoactive materials, and carbon spheres (CS) with excellent 
CO2 adsorption properties and high surface area (SBET). The aim was to 
achieve a synergistic effect of photocatalysts with carbon spheres by 
combining the two components with specific properties and comparing 
the activities of the two groups of materials tested, which were CS/TiO2 
and CS/ZnO. Through this combination, we expected to achieve 
enhanced CO2 adsorption, which is crucial for the photocatalytic 
reduction of carbon dioxide. 

2. Materials and methods 

2.1. Samples preparation 

The following materials were used to prepare photocatalysts: P25 
type TiO2 (AEROXIDE® TiO2 P25, Evonik Industries AG, Germany), ZnO 
with particle size < 100 nm (Sigma–Aldrich, USA), and carbon spheres 
obtained using resorcinol and formaldehyde. A detailed description of 
the synthesis of carbon spheres has been described in our previous 
publication [58]. The mixtures of titanium dioxide or zinc oxide with 

carbon spheres were prepared using a microwave–assisted solvothermal 
reactor (Ertec, Poland), as described elsewhere [59]. The obtained ma-
terials were ground in a mortar, and then their photocatalytic properties 
were assessed. 0.2 M aqueous NaOH solution was prepared from 
reagent–grade sodium hydroxide (Avantor Performance Materials, 
Poland) and distilled water. 

2.2. Specific surface area, total pore volume and adsorption capacity 
measurements 

Surface properties were determined using N2 adsorption/desorption 
isotherms performed on a QUADRASORB evoTM Gas Sorption auto-
matic system (Quantachrome Instruments, Boynton Beach, FL, USA) at 
− 196 ◦C. Before each adsorption experiment, samples were outgassed at 
250 ◦C under a vacuum of 1 × 10− 5 mbar for 12 h using a MasterPrep 
multi-zone flow/vacuum degasser from Quantachrome Instruments to 
remove adsorbed species that could intervene in the adsorption pro-
cesses. The surface area (SBET) was determined in the relative pressure 
range of 0.05–0.3 and calculated based on Brunauer–Emmett–Teller 
(BET) equation. The total pore volume (TPV) was calculated from the 
volume of nitrogen held at the highest relative pressure (p/p0 = 0.99). 
Pore size distributions (PSD) of the samples were determined from CO2 
adsorption isotherms at 0 ◦C by integrating the pore volume distribution 
function using the NLDFT method. 

Carbon dioxide adsorption isotherms at 25 ◦C were measured with 
Quadrasorb™ automatic system (Quantachrome Instruments, Boynton 
Beach, FL, USA) in the pressure range between 0.01 and 0.98 bar. 

2.3. Zeta potential and average particle size measurements 

The zeta potential of the samples was measured using Zetasizer 
Nano–ZS (Malvern Instruments Ltd. Malvern, UK). The measurements 
were performed at a pH of 6.9, corresponding to a pH in a given process 
environment. 

The average particle size of TiO2 and ZnO was determined using the 
same instrument. The measurements were carried out for samples 
dispersed in ultrapure water. 

2.4. SEM analysis 

The surface morphology of the samples was investigated with a 
scanning electron microscope (SEM Hitachi SU8020, Japan) with an 
acceleration voltage of 5.0 kV, and magnitude of 45.0k and 50.0k. 

2.5. Photocatalytic process 

The experiments were performed in a liquid–phase bottle–shaped 
reactor. The working volume of the reactor was 766 cm3. A 150 W 
medium–pressure mercury lamp TQ150 Z3 (Heraeus, Germany) was 
used in the tests. It was characterized by a wide range of UV–Vis light, 
with an intense peak at about 365 nm (UV–A radiation). As presented in 
the scheme, the lamp was placed in a quartz condenser inside the 
reactor, (Fig. 1). It was constantly cooled with fresh water. The reactor 
was placed in the thermostatic chamber to maintain a stable tempera-
ture and exclude any light sources. 

The photocatalytic processes were prepared as follows: 500 cm3 of 
0.2 M aqueous NaOH solution was poured into the reactor. Then 200 mg 
of the tested material was added. The mixture was saturated with pure 
CO2 (Messer, Poland) for 16 h. Then, the system was closed, and the 
lamp was turned on. The suspension of the photocatalyst was constantly 
stirred with the use of the magnetic stirrer and the pump (flow rate of 
1.6 dm3/h). The processes were performed at 20 ◦C and lasted for 6 h. 
The gas samples for analysis were collected every 1 h. 
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2.6. Gas phase analysis 

The gas phase composition was analyzed using a Master GC chro-
matograph (DANI Instruments, Italy) equipped with micropacked 
Shincarbon ST 100/120 column. The analyses were performed using 
TCD and FID detectors. The methanizer was placed between the de-
tectors. It converted the inorganic product (carbon monoxide) to 
methane, allowing us to accurately determine its amount using FID. The 
carrier gas was argon. The volume of the analyzed gas sample was 
1 cm3. The amount of hydrogen, carbon monoxide and methane in a gas 
phase was calculated based on the calibration curve. 

3. Results and discussion 

In our previously works, the textural and adsorption properties of 
carbon spheres and carbon spheres/metal oxides composites [59–61] 
were studied. In Figs. 2 and 3, CO2 adsorption isotherms are presented 
for the composites based on carbon spheres and titanium dioxide and 
zinc oxide, respectively. It is clearly shown that together with the 

increase of the carbon content in the materials higher values of CO2 
adsorption were recorded. CO2 adsorption at 25 ◦C was the highest for 
the samples with the addition of 1.00 g of CS, and it ranged 1.22 mmol/g 
and 1.11 mmol/g for materials containing TiO2 and ZnO, respectively. It 
was found that for all the studied samples slightly lower values of CO2 
adsorption were observed for the composites with addition of zinc oxide, 
regardless of the ratio of metal oxide to carbon in the obtained materials. 
From the available papers [62–65] it is known that in the adsorption of 
carbon dioxide not only the values of surface area or total pore volume is 
important, but above all the smallest pores, below 0.7 nm are respon-
sible for this process. In Fig. 4 the comparison between the pore size 
distributions of the obtained materials is presented. It was found that the 
content of ultramicropores increased together with the increase of 
content of carbon for two types of materials. Additionally it was noticed 
that slightly lower volumes of micropores and ultramicropores were 
obtained in the case of the samples modified with zinc oxide and 
therefore slightly lower values of CO2 adsorption were noticed for this 
type of the samples. Detailed characteristics of the textural properties of 
the obtained composites have been presented in the paper [59]. 

The experimentally determined zeta potentials at pH = 6.9 (the same 

Fig. 1. Scheme of the reactor for photocatalytic process in a liquid phase.  

Fig. 2. CO2 sorption isotherms of the obtained CS/TiO2 composites.  

Fig. 3. CO2 sorption isotherms of the obtained CS/ZnO composites.  

Fig. 4. Comparison of the pore size distributions of the CS/TiO2 and CS/ZnO 
composites with the lowest and the highest content of carbon. 
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as in the photoreactor after saturation with CO2) were negative for all 
base materials, and range from − 9.2 mV to − 19.9 mV. From the results, 
it can be concluded that ZnO had a less negative ζ–potential in a given 
environment than CS. Therefore, the repulsive forces between the par-
ticles of these two materials were weaker than in the samples containing 
CS and TiO2, with the zeta potential of titanium dioxide being higher 
than that of carbon spheres. This could affect the transfer of electrons 
and also CO2 molecules between the adsorbent and the photocatalysts. 
The average particle size was similar for TiO2 and ZnO (136.2 nm and 
92.5 nm, respectively), while carbon spheres were characterized by the 
largest value of this parameter (471.2 nm). The differences in size be-
tween an active material and the adsorbent can be seen in Fig. 5. In the 
SEM images shown, it can be observed that the carbon spheres are much 
larger in size than the photocatalysts particles. It can also be seen that 
TiO2 and ZnO form agglomerates on the surface of the carbon spheres. In 
addition, they differ in shape. While TiO2 is fine and rather spherical, 
ZnO has an elongated appearance. 

The starting materials (shown in Table 1) and their mixtures with 
different ratios of CS to TiO2/ZnO were tested for their photocatalytic 
properties in the photocatalytic reduction of CO2 in the liquid phase, 
using a suspension of the tested material in a 0.2 M NaOH solution, as 
described in Section 2.5. It should be emphasized that the purpose of the 
experiments was to verify whether, after mixing materials commonly 
used as photocatalysts and carbon spheres with good adsorption prop-
erties and a developed specific surface area, a synergistic effect occurs 
and the amounts of the obtained products will be higher due to the 
increased ability to adsorb CO2 and thus a longer contact time between 
the carbon dioxide molecule and the surface of the photocatalysts. 

The CO2 photoreduction products identified during the process are 
hydrogen, carbon monoxide, and methane. They can be formed in the 
following reactions [67–69]:  

• water splitting, which is a two–electrons reaction and is the first 
necessary step in CO2 reduction, hydrogen is formed:  

H2O + 2h+ → ½O2 + 2H+ (1)  

2H+ + 2e– → H2                                                                             (2) 

the two–electron reduction of CO2, leading to the formation of the 
main product, namely carbon monoxide:  

CO2 + 2H+ + 2e– → CO + H2O                                                       (3)  

• the eight–electron reaction that requires the most energy and pro-
duces methane:  

CO2 + 8H+ + 8e– → CH4 + 2H2O                                                    (4)  

These products are characterized by poor solubility in liquids and 
immediately desorb from the liquid phase to the gas phase after for-
mation. Therefore, their analysis was performed only in the gas phase. 

Fig. 5. SEM images of: (A) 0.50 CS/TiO2; (B) 0.50 CS/ZnO.  

Table 1 
The selected properties of base materials [59,66].  

Material Properties  

SBET 

[m2/g] 
TPV 
[cm3/g] 

CO2 25 ºC 
[mmol/g] 

ζ–potential 
[mV] 

Average 
particle size 
[nm] 

CS  455  0.26  2.43 –13.4  417.2 
P25 

TiO2  

54  0.40  0.16 –19.9  136.2 

ZnO  11  0.03  0.04 –9.2  92.5 

SBET – specific surface area; TPV – total pore volume; CO2 0 ◦C – CO2 sorption 
capacity at 0 ◦C; CO2 25 ◦C – CO2 sorption capacity at 25 ◦C; ζ–potential – zeta 
potential at pH = 6.9 

Table 2 
Materials tested in photocatalytic reduction of CO2.  

Material 
acronym 

Mass ratio of carbon 
spheres to TiO2 or 
ZnO 

Mass of the 
material in the 
reactor [g] 

Mass of pure TiO2 or 
ZnO in the reactor 
[g] 

TiO2 0.00: 1.00  0.200  0.200 
0.05 CS/ 

TiO2 

0.05: 1.00  0.204  0.194 

0.10 CS/ 
TiO2 

0.10: 1.00  0.206  0.188 

0.25 CS/ 
TiO2 

0.25: 1.00  0.204  0.164 

0.50 CS/ 
TiO2 

0.50: 1.00  0.199  0.133 

1.00 CS/ 
TiO2 

1.00: 1.00  0.203  0.102 

ZnO 0.00: 1.00  0.202  0.202 
0.05 CS/ 

ZnO 
0.05: 1.00  0.202  0.192 

0.10 CS/ 
ZnO 

0.10: 1.00  0.201  0.183 

0.25 CS/ 
ZnO 

0.25: 1.00  0.203  0.163 

0.50 CS/ 
ZnO 

0.50: 1.00  0.201  0.134 

1.00 CS/ 
ZnO 

1.00: 1.00  0.205  0.103  
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The results obtained are discussed below. 
The data of the tested samples are listed in Table 2. 12 experiments 

were performed with mixtures of TiO2 or ZnO with carbon spheres (CS). 
For both groups of materials, samples were obtained with mass ratios of 
CS to TiO2 or ZnO ranging from 0.00–1.00 to 1.00. Pure titanium dioxide 
and zinc oxide as reference materials were also tested. 

3.1. Hydrogen 

Hydrogen itself is a desired product of the photochemical decom-
position of water. It is also an intermediate product necessary for the 
photochemical decomposition of CO2 into other valuable compounds. 
When irradiated with UV–Vis radiation, it is formed in the process of 
water splitting. Fig. 6 shows the graphs of the increase in the amount of 
hydrogen during the process for a group of materials containing TiO2. 

The amount of hydrogen generated after 6 h of the process was in the 
range of 4.1–19.2 µmol/gmaterial/dm3. The highest value was observed 
for the 0.05 CS/TiO2 sample and the lowest for the 0.50 CS/TiO2 ma-
terial. Only one of the five tested mixtures was characterized by higher 
hydrogen production activity compared to pure TiO2, and that was the 
0.05 CS/TiO2 sample. In addition, hydrogen could not be detected for 
most samples until the second hour of the process. The graph shows 
fluctuations in the content of this component and even a decrease in its 
amount (e.g. for the sample 1.00 CS/TiO2 – from 10.4 µmol/gmaterial/ 
dm3 after 4 h of the process to 7.8 µmol/gmaterial/dm3 after 6 h). This can 
be explained by the fact that hydrogen in the CO2 reduction process is an 
intermediate product continuously consumed in the reactions to form 
CO and CH4. 

No correlation was observed between the addition of carbon spheres 
and the amount of hydrogen produced. It can only be said that a small 
addition of carbon spheres (0.05 g of CS per 1 g of TiO2) improved the 
photocatalytic properties of TiO2 for hydrogen production. However, 
the further addition of carbon spheres negatively impacted the amount 
of H2 produced. 

Fig. 7 shows analogous diagrams for hydrogen production with ZnO 
as the active phase. In this case, slightly less hydrogen was obtained. It 
was in the range of 2.8–14.0 µmol/gmaterial/dm3. In contrast to CS/TiO2, 
the highest result was obtained for the sample with the highest addition 
of carbon spheres – 1.00 CS/ZnO, and at the same time it was the only 
material whose use resulted in the production of hydrogen at a level 
close to that of pure ZnO. In addition, a more significant effect of adding 
carbon spheres on H2 production can be observed here. The hydrogen 
content decreased significantly at low CS additions, and it began to in-
crease at the addition of ≥ 0.25 g of CS per 1 g of ZnO. Variations in the 

amount of this component can also be observed during the process. It is 
important to note that small amounts of hydrogen could already be 
detected after 1 h of the process in the tests with materials containing 
carbon spheres. At the same time, with pure ZnO it was visible on the 
chromatogram only after 4 h. Thus, it can be said that the addition of 
carbon spheres accelerates the process of hydrogen generation, but does 
not increase its amount. 

Comparing the two groups of tested materials, it can be concluded 
that the amounts of hydrogen obtained were in a similar range, 
regardless of the active phase used. The addition of carbon spheres did 
not improve the photocatalytic properties of the materials for hydrogen 
production. Nevertheless, more favorable results were obtained for TiO2 
at a deficient CS concentration in the sample. On the other hand, for the 
ZnO samples, the highest amount of hydrogen was observed using the 
material with the highest percentage of carbon spheres tested. 

A graph comparing the H2 production after 6 h as a function of the 
number of carbon spheres for both tested groups is presented in Fig. 8. 
As mentioned earlier, in the presence of carbon dioxide, the hydrogen 
produced is consumed by producing carbon monoxide and methane. 
Therefore, photocatalysts used for a photocatalytic reduction of CO2 
should not be evaluated based on the amount of hydrogen produced. 

3.2. Carbon monoxide 

Carbon monoxide can be produced directly during the carbon 

Fig. 6. The total content of H2 in the gas phase after 6 h of the process with 
various CS/TiO2 photocatalysts. 

Fig. 7. The total content of H2 in the gas phase after 6 h of the process with 
various CS/ZnO photocatalysts. 

Fig. 8. The dependence of the amount of hydrogen after 6 h of process on the 
addition of carbon spheres for CS/TiO2 and CS/ZnO materials. 
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dioxide reduction according to the reaction (3). At the same time, it can 
be a product of methane oxidation in reactions that take place under UV 
radiation [70]:  

2CH4 + 2O2 → 2CO + 4H2O                                                           (5)  

2CH4 + O2 → 2CO + 4H2                                                               (6) 

Under the conditions used in the experiments described in Section 
2.5., carbon monoxide is the main product of the process. The graphs of 
the CO content in the gas phase for the subsequent CS/TiO2 are shown in  
Fig. 9. It can be concluded that the addition of carbon spheres positively 
affected the production of carbon monoxide. For all tested mixtures of 
titanium dioxide with carbon spheres, the produced volumes of carbon 
monoxide were higher compared to pure TiO2. The highest CO volume 
was obtained using 0.10 CS/TiO2 material, and it was 19.3 µmol/gma-

terial/dm3 after 6 h of the process. Further additions of carbon spheres 
caused a decrease of carbon monoxide content in the gas phase to 
11.5 µmol/gmaterial/dm3 after 6 h of the process for the material with the 
highest CS addition (1.00 CS/TiO2). For pure TiO2, it was only 
10.7 µmol/gmaterial/dm3. It is also important to note that the amount of 
carbon monoxide increased linearly at different rates for all processes. 
The presence of CO in the gas phase was observed already after 1 h of the 
process. This fact allows us to conclude that the reduction of CO2 began 
immediately after the irradiation started, and the addition of carbon 
spheres additionally accelerated this process, as evidenced by the higher 
amounts of CO obtained in tests with CS/TiO2 mixtures. 

In the case of materials containing ZnO, the amounts of obtained CO 
were in the range of 7.0–15.9 µmol/gmaterial/dm3, as presented in  
Fig. 10. The highest result was noted for pure ZnO. Unlike for TiO2, the 
addition of carbon spheres did not improve the photocatalytic properties 
of zinc oxide. It is interesting, however, that with the addition of carbon 
spheres between 0.05 and 0.25 g of CS per 1 g of ZnO, the carbon 
monoxide content decreased and then increased at higher CS contents in 
the samples. The highest result among the CS/ZnO mixtures was 
recorded for 1.00 CS/ZnO material, and it was 13.3 µmol/gmaterial/dm3 

after 6 h of process. Based on the results, it can be concluded that a 
higher addition of CS to ZnO is more advantageous, but it generally 
reduces the photoactivity of zinc oxide. 

Comparing both groups of tested materials (Fig. 11), it can be 
assumed that similar amounts of carbon monoxide were produced in 
performed processes, although the tests using TiO2–containing materials 
yielded slightly higher results. The most preferred amount of carbon 
spheres to TiO2 was 0.10 g per 1 g of TiO2. In turn, for ZnO, it was 1.00 g 
of CS per 1 g. However, it should be noted that despite that fact, a lower 

result was obtained for this material compared to pure ZnO. 

3.3. Methane 

Methane is the last of the analysed products of the photocatalytic 
reduction of carbon dioxide. The production of this compound requires 8 
electrons (Eq. (4)), which is why this reaction is the most difficult to 
perform. The energy and electrons present in the reactor are constantly 
involved in competing reactions. Additionally, methane molecules may 
undergo oxidation, as mentioned in Section 3.2. 

In processes using CS/TiO2 materials, small amounts of methane 
were obtained (0.4–0.6 µmol/gmaterial/dm3), as presented in Fig. 12. 
Moreover, no correlation was revealed between the amount of produced 
CH4 and the number of carbon spheres in the samples. Regardless of this, 
similar values of this compound were obtained. 

Conclusions may be slightly different in the case of materials con-
taining ZnO. Although the amounts of methane produced were also 
negligible, adding 1.00 g of CS to 1 g of ZnO increased methane pro-
duction to 1.7 µmol/gmaterial/dm3. For pure ZnO, it was only 0.5 µmol/ 
gmaterial/dm3. The summary graph for the group of CS/ZnO materials is 
shown in Fig. 13. Fig. 14 compares the amount of methane obtained 
after 6 h of the process for both groups of materials. 

Fig. 9. The total content of CO in the gas phase after 6 h of the process with 
various CS/TiO2 photocatalysts. 

Fig. 10. The total content of CO in the gas phase after 6 h of the process with 
various CS/ZnO photocatalysts. 

Fig. 11. The dependence of the amount of carbon monoxide after 6 h of process 
on the addition of carbon spheres for CS/TiO2 and CS/ZnO materials. 
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4. Conclusions 

The experiments were carried out to evaluate the photocatalytic 
activity of two groups of materials containing TiO2 and ZnO with the 
addition of carbon spheres in the amount of 0.05–1.00 g of CS per 1 g of 
TiO2/ZnO in CO2 reduction. These processes were performed in the 
liquid phase using 0.2 M NaOH aqueous solution. The samples were 
irradiated with UV–Vis light for 6 h. 

Hydrogen, carbon monoxide, and methane products have been 
identified in the gas phase. The results were compared with those for 
initial materials, i.e. pure TiO2 and ZnO. Based on the results, it can be 
concluded that both groups of materials generated similar amounts of 
the products mentioned above. However, samples containing TiO2 had 
slightly higher activity in hydrogen and carbon monoxide production 
than ZnO–containing materials. On the other hand, more methane was 
produced in the processes using CS/ZnO samples, although it was an 
insignificant amount for all the tested samples. 

The main product of the performed processes was carbon monoxide. 
Similar amounts of hydrogen were also obtained, although, in the 
reduction of CO2, it was an intermediate product, constantly consumed 
in the reactions leading to the formation of CO and CH4. It can also be 
assumed that adding carbon spheres to titanium dioxide improved its 
photocatalytic properties in the production of carbon monoxide. In the 
case of CS/ZnO materials, no increase in activity was observed. 

Based on the results, it can be concluded that a smaller amount of 
carbon spheres was more efficient for TiO2–containing materials (0.10 g 
of CS per 1 g of P25), while for ZnO, better results were obtained with 
the sample containing the most significant amount of carbon spheres 
(1.00 g of CS per 1 g of ZnO). This discrepancy may indicate that 
intermolecular interactions occurring in the materials may have a 
greater influence on the CO2 photoreduction process than the pore size 
distribution or increased CO2 adsorption capacity. The less negative zeta 
potential of ZnO resulted in closer contact with the carbon sphere par-
ticles, giving better results for samples with a higher CS content. In turn, 
the higher activity of TiO2 compared to ZnO could result from its higher 
SBET and TPV values. Due to this fact, the contact time between the 
photocatalyst and the CO2 molecule was longer. On the other hand, 
improved adsorption capacity provided by carbon spheres addition can 
at some point positively affect the photocatalyst performance. It should 
be noted that this will also depend on the photocatalytic ability of the 
active material itself. 
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Fig. 13. The total content of CH4 in the gas phase after 6 h of the process with 
various CS/ZnO photocatalysts. 

Fig. 14. The dependence of the amount of methane after 6 h of process on the 
addition of carbon spheres for CS/TiO2 and CS/ZnO materials. 
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R. Schomäcker, Photocatalytic reduction of carbon dioxide over Cu/TiO2 
photocatalysts, Environ. Sci. Pollut. Res. 25 (2018) 34903–34911, https://doi.org/ 
10.1007/S11356-017-0944-8. 
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